title: zk应用场景 date: 2020-06-29
zookeeper以目录树的形式管理数据,提供znode监听、数据设置等接口,基于这些接口,我们可以实现Leader选举、配置管理、命名服务等功能,ZK提供了以下API,供client操作znode和znode中存储的数据: ● create(path, data, flags):创建路径为path的znode,在其中存储data[]数据,flags可设置为Regular或Ephemeral,并可选打上sequential标志。 ● delete(path, version):删除相应path/version的znode ● exists(path,watch):如果存在path对应znode,则返回true;否则返回false,watch标志可设置监听事件 ● getData(path, watch):返回对应znode的数据和元信息(如version等) ● setData(path, data, version):将data[]数据写入对应path/version的znode ● getChildren(path, watch):返回指定znode的子节点集合
命名服务器事一个比较常用的应用场景,客户端通过制定名字来获取服务器资源获或提供者信息等,被命名的可以服务器地址,远程对象。通过zk提供的创建节点的api,很容易创建一个全局唯一的path,这个path就可以做一个名称,
dubbo使用zk就是用来做服务器名称。维护全局的服务地址列表。
服务提供者在启动的时候,向ZK上的指定节点/dubbo/{serviceName}/providers目录下的提供者URL地址, 并向/dubbo/
{serviceName}目录下所有提供者和消费者的信息
zk客户端api提供了操作znode数据的功能。再分布式环境中我们可以配置文件存放在znode上,不同的服务需要使用到哪些配置的时候可以直接从znode上去获取。而且通过zk 的心跳极值,我们的配置文件是可以做到动态配置的。一般的配置中心的做法是在系统启动之后加载我们的内存当中,一但配置文件需要做响应的调整的时候,需要重启服务进行load配置操作,但是很多的场景事我们只需要更改一点点的内容就去重启服务,代价不可谓不大。但zk就可以避免这问题的发生,当配置文件发生改变的时候,watch为通知到我们的服务对其修改操作。
ZooKeeper中特有watcher注册与异步通知机制,能够很好的实现分布式环境下不同系统之间的通知与协调,实现对数据变更的实时处理。使用方法通常是不同系统都对ZK上同一个znode进行注册,监听znode的变化(包括znode本身内容及子节点的),其中一个系统update了znode,那么另一个系统能够收到通知,并作出相应处理
分布式锁,这个主要得益于ZooKeeper为我们保证了数据的强一致性。锁服务可以分为两类,一个是 保持独占,另一个是 控制时序。
队列方面,简单地讲有两种,一种是常规的先进先出队列,另一种是要等到队列成员聚齐之后的才统一按序执行。对于第一种先进先出队列,和分布式锁服务中的控制时序场景基本原理一致,这里不再赘述。 第二种队列其实是在FIFO队列的基础上作了一个增强。通常可以在 /queue 这个znode下预先建立一个/queue/num 节点,并且赋值为n(或者直接给/queue赋值n),表示队列大小,之后每次有队列成员加入后,就判断下是否已经到达队列大小,决定是否可以开始执行了。这种用法的典型场景是,分布式环境中,一个大任务Task A,需要在很多子任务完成(或条件就绪)情况下才能进行。这个时候,凡是其中一个子任务完成(就绪),那么就去 /taskList 下建立自己的临时时序节点(CreateMode.EPHEMERAL_SEQUENTIAL),当 /taskList 发现自己下面的子节点满足指定个数,就可以进行下一步按序进行处理了。
在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。 利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,最终一定只有一个客户端请求能够创建成功。利用这个特性,就能很轻易的在分布式环境中进行集群选取了。 另外,这种场景演化一下,就是动态Master选举。这就要用到EPHEMERAL_SEQUENTIAL类型节点的特性了。 上文中提到,所有客户端创建请求,最终只有一个能够创建成功。在这里稍微变化下,就是允许所有请求都能够创建成功,但是得有个创建顺序,于是所有的请求最终在ZK上创建结果的一种可能情况是这样: /currentMaster/{sessionId}-1 ,/currentMaster/{sessionId}-2,/currentMaster/{sessionId}-3 ..... 每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上小时,那么之后最小的那个机器就是Master了。